理系夫婦Y子とMの昭和から令和まで

都内で働く薬剤師Y子と、パソコン・DIY・生物などに詳しい理系の夫M。昭和30年代から今日までの実体験に最新の情報を加え、多くの方々、特に子育て・孫育て世代の皆様のお役に立つことを願いつつ発信する夫婦(めおと)ブログです。

ヒトの設計図 ついに完全解読

Mです。

 4月はじめ、アメリカの科学雑誌「Science」に、ヒトの遺伝子解析が完了したという報告が上がった。5月3日の朝日新聞科学面に、そのわかりやすい解説が載った。ログイン出来ないと一部しか読めないが、電子版アドレスは下記である。
  https://www.asahi.com/articles/ASQ4X5WWLQ4TUTFL00M.html

 生き物の設計図である遺伝子(DNA)は、4種の核酸という分子の連なりで出来ていて、その並びがアミノ酸を決定し、それを繋げることでタンパク質が作られる。生き物の身体を作っている中心がタンパク質だから、遺伝子は身体の設計図だ、という理屈になる。

 1980年代にこのDNAを構成している核酸を順繰りに読み取っていく技術が開発されて、90年にヒトのDNAをすべて読み取ろうという計画が世界的な共同プロジェクトとして始まった。それぞれの生き物の基本となるDNAセットをゲノムと呼ぶ。つまり、生き物の設計図=ゲノム、である。そこで、このプロジェクトは、ヒトゲノム計画、と呼ばれた。そして14年かけて、サンプルとしていた白人のDNA読み取りが完了したと宣言された。2013年のことである。

 とはいえ、これは核酸の並びが解読された、という意味であって、その並びの意味するものが解明されたということではない。ただ、読めた、ということ。解読作業と並行して生物学者、生化学者たちは、その核酸の並びがどんなタンパク質に対応しているかを必死に探っては発表するという競争を続けてきたのである。
 その流れの中で、特定の病気が特定の遺伝子配列の乱れや変化によって起こっていること、身体の中で病気と闘っている仕組みを特定の遺伝子が担っていること、などがいくつも解明され、医学や薬学の分野で画期的な進歩を生み出してきた。読み取りが完了したという段階で既に具体的な成果につながってきたのは、ゲノムプロジェクトがいかに人間社会に恩恵をもたらしてきたかの証拠といえる。

 そんな優れた業績なのだが、新聞解説に示されているように、実は、2003年の解読完了宣言時には、モレがあった。
 長大なヒトDNAの各所にある「繰り返し配列」が厄介だったのである。
 当時の解析装置では、同じ塩基の連なりが単位となって同じ配列が何度もつながったり、異なる配列単位が入れ子になりながら繰り返したりする領域については、繰り返している、ということは分かるものの、どういう順番なのか、どんな組み合わせで繰り返しているのか、までは読み切れなかったのである。
 技術進歩は企業レベルで飛躍的に進む。その結果として、科学論文に現れない進歩として、解析技術の躍進が生まれる。そのおかげで、同じ繰り返しばかりで「いったいどうなっているの?」状態だったモレ部分が徐々に解明され、ついに完全解読に至った、というのが今回のScience報告である。

 報告された雑誌の表紙が上の図だが、右下から始まってぐにゃりと曲がりながら右上に向かっている短冊模様が、ヒト遺伝子のかたまりである染色体を表している。数えていただければ判るが23本ある。中学校の教科書にあるのだと思うが、これがヒトの細胞すべて(成熟赤血球では消失)に備わっている設計図のセット。23本がそれぞれ対を作っているので、細胞の中では、染色体本数としては46本になる。(ただし、ヒトのオスでは、性染色体の片方がY染色体なので、最後の1対は長さの異なるXYのでこぼこペアであることは注意が必要)上の図は、極端に短いY染色体が無いようなので、多分女性のサンプルが使われていたのだと思う。
 余談が長くなってしまった。
 重要なのは図の短冊にランダムに現れている赤い線の部分だ。ごく狭いものからだいぶ長めの赤領域までいろいろだが、この赤い部分が前述の「繰り返し配列」領域で、全体から見るとおよそ8%に相当していたという。2003年以降の技術革新によって配列の確定手法が進歩し、ついにこの赤い領域すべてについて塩基の配列が確定した、ということなのだ。

 「そりゃあ、ご苦労様でした。まだ意味づけがともなわないのに、よくぞそこまで根を詰めて仕事をされましたね。頭が下がります・・・」と皮肉を言う研究者もいるだろうが、それは違う。解読された配列を元にわかりやすい研究に突き進んで早めの成果を上げることも有意義だが、とにかくすべて解読するまで諦めない、と地道な研究を続けるのも科学全体から見れば非常に重要なことで、今まで解明されていない「繰り返し」の意味するものを、これでようやく研究できる地盤が整ったのだ、と捉えれば、今回の成果は実に大きな進歩なのだと思う。

 これからは、人種によるゲノム配列の差を解析するなど、今回の成果を「基本パターン」にした比較研究が一気に進んでいくのだろう。さらに、個人個人で異なる遺伝特性が詳しく解析できるようになって、病気の遺伝子治療分野が一気に加速していく可能性もある。一市民として、大いに期待が膨らむ。

 そんな期待を抱く一方で、日本の科学研究の実情を見るにつけ、華々しい成果にはすぐに結びつくことの無い地道な基礎研究を進め続ける西欧の底力を羨ましく思うのは、私だけでないだろう。基礎研究では食えない、と50年以上言われ続けている日本の科学界は、これから先いったいどうなってしまうのだろうか。この前ノーベル賞を受賞した真鍋さんも、日本では出来なかった基礎研究を米国で地道に続けた方だった。基礎研究があってこその応用研究。太っ腹な科学教育体制が無いと、優秀な頭脳はみんな外国に流れてしまうかも知れない。